Exam 2 Review

October 17, 2011

- 1. Sketch the level curves of the function $g(x,y)=\sqrt{9-x^2-y^2}$ for k=0,1,2,3
- 2. Sketch the graph of the function f(x, y) = 6 3x 2y for only positive values of x, y, f(xy).
- 3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exist.
- 4. Evaluate $\lim_{(x,y)\to(1,2)}(x^2y^3-x^3y^2+3x+2y)$ and justify your solution.
- 5. Where is the function $f(x, y) = \frac{x^2 y^2}{x^2 + y^2}$ continuous?
- 6. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y.

7. If
$$f(x,y) = \sin\left(\frac{x}{1+y}\right)$$
, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

- 8. Calculate f_{xxyz} if $f(x, y, z) = \sin(3x + yz)$.
- 9. Show that $f(x, y) = xe^{xy}$ is differentiable at (1, 0) and find its linearization there. Then use the linearization to approximate f(1.1, -0.1).
- 10. If $z = f(x, y) = x^2 + 3xy y^2$ find the differential dz.
- 11. If $u = x^4y + y^2z^3$, where $x = rse^t$, $y = rs^2e^{-t}$, and $z = r^2s\sin t$ find the value of $\frac{\partial u}{\partial s}$ when r = 2, s = 1, t = 0.
- 12. Find y' if $x^3 + y^3 = 6xy$.
- 13. Find the directional derivative $D_u f(x, y)$ if $f(x, y) = x^3 3xy + 4y^2$ and u is the unit vector given by angle $\theta = \frac{\pi}{6}$. What is $D_u f(1, 2)$?
- 14. If $f(x,y) = xe^y$, find the rate of change of f at the point P(2,0) in the direction from P to Q(1/2,2).
- 15. Find the maximum rate of change of $f(x, y) = \frac{y^2}{x}$ at the point (2, 4) and the direction in which the maximum occurs.
- 16. Find the equation of the tangent line and the normal line to the surface $2(x-2)^2 + (y-1)^2 + (z-3)^2 = 10$ at the point (3,3,5).
- 17. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4, 2, 0).
- 18. Find the dimensions of the rectangular box with largest volume if the total surface area is given as $64cm^3$.
- 19. Find the dimensions of a rectangular box of maximum volume such that the sum of the lengths of its 12 edges is a constant c.